Ruby 1.8.7 リファレンスマニュアル > ライブラリ一覧 > win32oleライブラリ > WIN32OLEクラス

class WIN32OLE + Object

クラスの継承リスト: WIN32OLE < Object < Kernel

要約

OLEオートメーションサーバをRubyで操作するためのクラスです。

Windowsの多くのアプリケーションやライブラリは、COMと呼ばれるAPI群を利用 して他のプログラムから操作できます。WIN32OLEがサポートしているのは、 COMのAPIのうち、特にインタープリタ用のインターフェイスであるOLEオートメー ション(IDispatchインターフェイス)とそれに付随するリフレクション用のイ ンターフェイスです。

これらのインターフェイスをサポートしている代表的なWindowsアプリケーショ ンに、Office、IE、iTunes、Illustratorがあります。また、WMI、WshShellな どのライブラリを利用してWindowsの情報を操作することも可能です。これらの プログラムをOLEオートメーションサーバと呼びます。

WIN32OLEオブジェクトは、OLEオートメーションサーバが提供するメソッドやプ ロパティ(Rubyの属性に対応)をスクリプトから呼び出す手段を提供します。 呼び出しには、Rubyのオブジェクトと同様にオブジェクトに続けて「.」とメソッ ド名、必要であれば引数のリストを記述します。最後の引数にHashを指定した 場合は、名前付き引数としてキーにパラメータ名、値に引数を指定できます。

サンプルコード

require 'win32ole'

excel = WIN32OLE.new('Excel.Application')
workbook = excel.Workbooks.Open('workbook.xls')
workbook.PrintOut
workbook.Close('SaveChanges' => false)
excel.Quit

なお、OLEオートメーションの仕様ではメソッド名は大文字と小文字を区別しま せん。そのため、以下のようにOLEオートメーションサーバのメソッド名は小文 字で記述しても構いません。

require 'win32ole'

excel = WIN32OLE.new('Excel.Application')
workbook = excel.workbooks.open('workbook.xls')
workbook.printout
workbook.close('SaveChanges' => false)
excel.quit

特異メソッド

codepage -> Fixnum

WIN32OLEがOLEオートメーションのインターフェイスに利用するコードページを 取得します。

OLEオートメーションに利用する文字列はUnicodeでエンコードします。 WIN32OLEはここで示されたコードページを利用してRubyのStringとUnicodeの相 互変換を行います。

ロード時の既定値はEncoding.default_internal、または Encoding.default_internalがnilの場合はEncoding.default_externalによって 求めたエンコーディングに対応するコードページです。もし、該当するコード ページが見つからない場合は、WIN32OLE::CP_ACPを利用します。

[RETURN]
WIN32OLEがオートメーション呼び出しの文字列変換に利用するコード ページを返します。
WIN32OLE.codepage   # => 932 (日本語Windowsの既定値)
codepage=(cp) -> nil

WIN32OLEがOLEオートメーションのインターフェイスに利用するコードページを 設定します。

WIN32OLEは、OLEオートメーション呼び出しに利用する文字列のUnicode変換に ここで設定したコードページを利用します。通常、WIN32OLEはロード時の Encoding.default_internalまたはEncoding.default_externalから適切なコー ドページを判断し、それを利用します。したがって、当メソッドを呼び出す必 要があるのは、WIN32OLEをrequireしたスクリプトと異なるエンコーディングを 利用しているスクリプトや、異なるエンコーディングを利用しているファイル から読み込んだ文字列を利用してWIN32OLEを呼び出す場合です。

[PARAM] cp:
コードページを指定します。
WIN32OLE.codepage = WIN32OLE::CP_UTF8
connect(ole) -> WIN32OLE

現在実行中のOLEオートメーションサーバに接続します。

connectメソッドは、COMのモニカを利用して、現在実行中のOLEオートメーショ ンサーバを検索し、接続します。接続に成功した場合、該当サーバを操作可能 なWIN32OLEオブジェクトが返ります。

[PARAM] ole:
接続対象のサーバを示すPROGID、CLSIDまたはモニカ(別名)を指定します。
[RETURN]
ole引数で特定されるWIN32OLEオブジェクトを返します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。
WIN32OLE.connect('Excel.Application') # => WIN32OLE object which represents running Excel.
PROGID

OLEオートメーションサーバを識別するための文字列。通常「ベンダー名.ア プリケーション名.インターフェイス名」の形式を取ります。レジストリの HKEY_CLASSES_ROOTの「.」で始まらないキーとして登録されます。

CLSID

OLEオートメーションサーバを含むCOMのクラスを識別するための128ビット GUID。文字列表現は、レジストリのHKEY_CLASSES_ROOT\CLSID下のキーとして登 録されます。

モニカ

モニカは、URIのようにWindows上のリソースを一意に識別するためのオブジェ クトのインターフェイスで、文字表現を持ちます。詳細については http://msdn.microsoft.com/en-us/library/ms691261(v=VS.85).aspx を参照してください。

const_load(ole, mod = WIN32OLE) -> ()

OLEオートメーションサーバが保持する定数を読み込み、指定されたモジュール に組み込みます。

OLEオートメーションサーバは、定数をクライアントへ提供できます。

const_loadメソッドはこれらの定数を読み込み、指定したモジュールに組み込 むことで参照可能とします。

[PARAM] ole:
定数を読み込む対象のWIN32OLEオブジェクトまたはタイプライブラ リ名(文字列)を指定します。
[PARAM] mod:
定数を定義する対象のモジュールを指定します。省略時は WIN32OLEに組み込まれます。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。

OLEオートメーションの定数は通常、VBのコード規約に準じて、vbConstantsの ように小文字で始まります。しかし、Rubyの定数は大文字で開始する規則のた め、WIN32OLEによってVbConstantsのように自動的に先頭が大文字化されます。

また、先頭が英字で始まらない定数については、CONSTANTSハッシュに登録され ます。この場合、元の定数名がキーとなります。

module EXCEL_CONST
end

excel = WIN32OLE.new('Excel.Application')
WIN32OLE.const_load(excel, EXCEL_CONST)
puts EXCEL_CONST::XlTop # => -4160
puts EXCEL_CONST::CONSTANTS['_xlDialogChartSourceData'] # => 541

モジュール名を省略した例

WIN32OLE.const_load(excel)
puts WIN32OLE::XlTop # => -4160

タイプライブラリ名を指定した例

module MSO
end

WIN32OLE.const_load('Microsoft Office 9.0 Object Library', MSO)
puts MSO::MsoLineSingle # => 1
new(server, host=nil) -> WIN32OLE

OLEオートメーションサーバを生成します。

引数で指定したCLSIDまたはPROGIDを持つOLEオートメーションサーバを生成し ます。生成に成功した場合、該当サーバを操作可能なWIN32OLEオブジェクトが 返ります。

CLSIDおよびPROGIDについてはWIN32OLE.connectを参照してください。

[PARAM] server:
OLEオートメーションサーバを示すPROGIDまたはCLSIDを文字列 で指定します。
[PARAM] host:
サーバを生成するホストのホスト名またはIPアドレスを文字列で 指定します。省略時は現在スクリプトを実行中のホストで生成し ます。
[RETURN]
hostで指定したホスト上のserver引数で指定したWIN32OLEオブジェク トを返します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。
WIN32OLE.new('Excel.Application') # => Excel OLE Automation WIN32OLE object.

WIN32OLE.new('{00024500-0000-0000-C000-000000000046}') # => Excel OLE Automation WIN32OLE object.
new -> Object

Objectクラスのインスタンスを生成して返します。

some = Object.new
p some #=> #<Object:0x2b696d8>
ole_free(aWIN32OLE) -> Integer

引数で指定したオブジェクトを解放します。

このメソッドは主にWIN32OLEのデバッグおよびWIN32OLEを利用するミドルウェ アの実装のために用意されています。このため、メソッドの内部動作は不定で す。COMの仕様とWIN32OLEの内部処理に熟知していない場合は使用しないでくだ さい。

[PARAM] aWIN32OLE:
解放するWIN32OLEオブジェクト。
[RETURN]
Releaseの戻り値。COMの仕様上は現在のオブジェクトの参照カウント 値を示します。
ole_reference_count(aWIN32OLE) -> Integer

引数で指定したオブジェクトの現在の参照カウント値を返します。

このメソッドは主にWIN32OLEのデバッグおよびWIN32OLEを利用するミドルウェ アの実装のために用意されています。このため、メソッドの内部動作は不定で す。COMの仕様とWIN32OLEの内部処理に熟知していない場合は使用しないでくだ さい。

[PARAM] aWIN32OLE:
参照カウント値を求めるWIN32OLEオブジェクト。
[RETURN]
AddRef呼び出し後のReleaseの戻り値。COMの仕様上は現在のオブジェ クトの参照カウント値を示します。
ole_show_help(obj, helpcontext = nil) -> ()

WIN32OLEオブジェクトのヘルプファイルを表示します。

Windows標準のヘルプ表示コンポーネントのHHCtrl.OCXを利用して、オブジェク トに関連付けられたヘルプファイル(chmファイル)を表示します。

また、chmファイルのフルパス名を指定して表示させることも可能です。

[PARAM] obj:
WIN32OLE_TYPEオブジェクトまたはWIN32OLE_METHODオ ブジェクト。直接ヘルプファイルのフルパス名を指定することも可 能です。
[PARAM] helpcontext:
obj引数にWIN32OLE_TYPEオブジェクトまたは WIN32OLE_METHODオブジェクトを指定した場合は、こ れらのオブジェクトの設定値を利用するため指定不要です。 obj引数にヘルプファイルのフルパス名を設定した場合は 0を指定してください。
[EXCEPTION] RuntimeError:
オブジェクトが関連するヘルプファイルを持たない場合 (no helpfile of `オブジェクト名') や、ヘルプファイル がインストールされていない場合 (failed to open help file `ファイル名') に通知します。
excel = WIN32OLE.new('Excel.Application')
typeobj = excel.ole_obj_help
WIN32OLE.ole_show_help(typeobj) if typeobj.helpfile

インスタンスメソッド

self == other -> bool

オブジェクトと other が等しければ真を返します。

このメソッドは各クラスの性質に合わせて再定義すべきです。 多くの場合、オブジェクトの内容が等しければ真を返すように (同値性を判定するように)再定義されることが期待されています。

デフォルトでは equal? と同じオブジェクト の同一性判定になっています。

[PARAM] other:
比較するオブジェクトです。
p("foo" == "bar") #=> false
p("foo" == "foo") #=> true

p(4 == 4) #=> true
p(4 == 4.0) #=> true

[SEE_ALSO] Object#equal?,Object#eql?

self === other -> bool

メソッド Object#== の別名です。 case 式で使用されます。このメソッドは case 式での振る舞いを考慮して、 各クラスの性質に合わせて再定義すべきです。

一般的に所属性のチェックを実現するため適宜再定義されます。

when 節の式をレシーバーとして === を呼び出すことに注意してください。

また Enumerable#grep でも使用されます。

[PARAM] other:
比較するオブジェクトです。
age = 12
result =
case age
when 0 .. 2
  "baby"
when 3 .. 6
  "little child"
when 7 .. 12
  "child"
when 13 .. 18
  "youth"
else
  "adult"
end

puts result #=> "child"

def check arg
  case arg
  when /ruby(?!\s*on\s*rails)/i
    "hit! #{arg}"
  when String
    "Instance of String class. But don't hit."
  else
    "unknown"
  end
end

puts check([]) #=> unknown
puts check("mash-up in Ruby on Rails") #=> instance of String class. But not hit...
puts check("<Ruby's world>") #=> hit! <Ruby's world>

[SEE_ALSO] Object#==, Range#===, Module#===, Enumerable#grep

self =~ other -> false

右辺に正規表現オブジェクトを置いた正規表現マッチ obj =~ /RE/ をサポートするためのメソッドです。 常に false を返します。

この定義により、=~ が再定義されたオブジェクトでは正常にマッチを行い、 それ以外のものは false を返すようになります。

[PARAM] other:
任意のオブジェクトです。結果に影響しません。
obj = 'regexp'
p(obj =~ /re/) #=> 0

obj = nil
p(obj =~ /re/) #=> false

[SEE_ALSO] String#=~

self[name] -> object
self[name, param...] -> object

オブジェクトのプロパティを参照します。

注意: このメソッドはRuby-1.9以降で動作が変わります。Ruby-1.9ではプロパ ティ名をメソッド名としたメソッド呼び出し形式で記述してください。

[]の中にWIN32OLEオブジェクトのプロパティ名を指定することで、オブジェク トをHashのように扱ってプロパティ値を参照します。

パラメータ付きプロパティの場合は、プロパティ名に続けて引数を「,」で区切っ て列記します。

なお、OLEオートメーションの仕様により、プロパティ名の大文字、小文字は区 別されません。

[PARAM] name:
プロパティ名を文字列で指定します。
[PARAM] param:
プロパティが引数を取る場合に指定します。
[RETURN]
プロパティ値を返します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しま した。理由はメッセージのHRESULTを調べてくだ さい。
excel = WIN32OLE.new('Excel.Application')
visible = excel['visible'] #=> false

上記のコードは以下と同等です。

excel = WIN32OLE.new('Excel.Application')
visible = excel.visible  #=> false
self[name] = value
self[name, param...] = value

オブジェクトのプロパティを設定します。

注意: このメソッドはRuby-1.9以降で動作が変わります。Ruby-1.9では WIN32OLE#setpropertyを利用してください。

[]でプロパティ名を指定したプロパティに値を設定します。

パラメータ付きプロパティの場合は、プロパティ名に続けて引数を「,」で区切っ て列記します。

なお、OLEオートメーションの仕様により、プロパティ名の大文字、小文字は区 別されません。

[PARAM] name:
プロパティ名を文字列で指定します。
[PARAM] param:
プロパティが引数を取る場合に指定します。
[PARAM] value:
プロパティに設定する値を指定します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。

OLEオートメーションのプロパティはRubyの属性と異なり、パラメータを取るこ とができます。

たとえばExcelのWorksheetオブジェクトのCellsプロパティは桁位置と行番号の 2つのパラメータを取ります。

これはVBでは次のように記述できます。

sheet.Cells(1, 1) = sheet.Cells(1, 2) ' セルB1の内容をセルA1へ

Rubyでは上記のコードの右辺をVBと同じく「sheet.Cells(1, 2)」のように記述 できますが、左辺の記述はできません。

そのため、次の例のように[]=メソッドを利用して、パラメータ付きプロパティ を設定します。

excel = WIN32OLE.new('Excel.Application')
excel.visible = true
sheet = excel.Workbooks.Add.Worksheets(1)
sheet['Cells', 1, 2] = 321
sheet['Cells', 1, 1] = sheet['Cells', 1, 2] #== sheet['Cells', 1, 1] = sheet.Cells(1, 2)
__id__ -> Integer
object_id -> Integer
id -> Integer

各オブジェクトに対して一意な整数を返します。あるオブジェクトに対し てどのような整数が割り当てられるかは不定です。

Rubyでは、(Garbage Collectされていない)アクティブなオブジェクト間で 重複しない整数(object_id)が各オブジェクトにひとつずつ割り当てられています。この メソッドはその値を返します。

TrueClass, FalseClass, NilClass, Symbol, Fixnum クラス のインスタンスなど Immutable(変更不可)なオブジェクトの一部は同じ内容ならば必ず同じ object_id になります。

これは、Immutable ならば複数の場所から参照されても`破壊的操作'による問題が発生しないので、 同じ内容のインスタンスを複数生成しないという内部実装が理由です。

Symbol#to_iで得られる整数と object_id は別物です。

id メソッドの再定義に備えて別名 __id__ が用意されて おり、ライブラリでは後者の利用が推奨されます。また __id__ を 再定義すべきではありません。

id は obsolete なので、object_id か __id__ を使用してください。

p "ruby".object_id #=> 22759500
p "ruby".object_id #=> 22759400

p [].object_id #=> 22759360
p [].object_id #=> 22759340

p :ruby.object_id #=> 103538
p :ruby.object_id #=> 103538

p 11.object_id #=> 23
p 11.object_id #=> 23

p true.object_id #=> 2
p true.object_id #=> 2

[SEE_ALSO] Object#equal?,Symbol

send(name, *args) -> object
send(name, *args) { .... } -> object
__send__(name, *args) -> object
__send__(name, *args) { .... } -> object

オブジェクトのメソッド name を args を引数に して呼び出し、メソッドの実行結果を返します。

ブロック付きで呼ばれたときはブロックもそのまま引き渡します。

send が再定義された場合に備えて別名 __send__ も 用意されており、ライブラリではこちらを使うべきです。また __send__ は再定義すべきではありません。

send, __send__ は、メソッドの呼び出し制限 にかかわらず任意のメソッドを呼び出せます。 クラス/メソッドの定義/呼び出し制限 も参照してください。

[PARAM] name:
文字列かSymbol で指定するメソッド名です。
[PARAM] args:
呼び出すメソッドに渡す引数です。
p -365.send(:abs) #=> 365
p "ruby".send(:sub,/./,"R") #=> "Ruby"


class Foo
  def foo() "foo" end
  def bar() "bar" end
  def baz() "baz" end
end

# 任意のキーとメソッド(の名前)の関係をハッシュに保持しておく
# レシーバの情報がここにはないことに注意
methods = {1 => :foo,
  2 => :bar,
  3 => :baz}

# キーを使って関連するメソッドを呼び出す
# レシーバは任意(Foo クラスのインスタンスである必要もない)
p Foo.new.send(methods[1])      # => "foo"
p Foo.new.send(methods[2])      # => "bar"
p Foo.new.send(methods[3])      # => "baz"

[SEE_ALSO] Object#method, Kernel.#eval, Proc, Method

_dump(limit) -> String

Marshal.#dump において出力するオブジェクトがメソッド _dump を定義している場合には、そのメソッドの結果が書き出されます。

バージョン1.8.0以降ではObject#marshal_dump, Object#marshal_loadの使用 が推奨されます。 Marshal.dump するオブジェクトが _dump と marshal_dump の両方の メソッドを持つ場合は marshal_dump が優先されます。

メソッド _dump は引数として再帰を制限するレベル limit を受 け取り、オブジェクトを文字列化したものを返します。

インスタンスがメソッド _dump を持つクラスは必ず同じフォー マットを読み戻すクラスメソッド _load を定義する必要があり ます。_load はオブジェクトを表現した文字列を受け取り、それ をオブジェクトに戻したものを返す必要があります。

[PARAM] limit:
再帰の制限レベルを表す整数です。
[RETURN]
オブジェクトを文字列化したものを返すように定義すべきです。
class Foo
  def initialize(arg)
    @foo = arg
  end
  def _dump(limit)
    Marshal.dump(@foo, limit)
  end
  def self._load(obj)
    p obj
    Foo.new(Marshal.load(obj))
  end
end
foo = Foo.new(['foo', 'bar'])
p foo                      #=> #<Foo:0xbaf234 @foo=["foo", "bar"]>
dms = Marshal.dump(foo)
p dms                      #=> "\004\bu:\bFoo\023\004\b[\a\"\bfoo\"\bbar"
result = Marshal.load(dms) #=> "\004\b[\a\"\bfoo\"\bbar" # self._load の引数
p result                   #=> #<Foo:0xbaf07c @foo=["foo", "bar"]>

インスタンス変数の情報は普通マーシャルデータに含まれるので、上例 のように _dump を定義する必要はありません(ただし _dump を定義すると インスタンス変数の情報は dump されなくなります)。 _dump/_load はより高度な制御を行いたい場合や拡張ライブラリで定義し たクラスのインスタンスがインスタンス変数以外に情報を保持する場合に 利用します。(例えば、クラス Time は、_dump/_load を定義して います)

[SEE_ALSO] Object#marshal_dump,Object#marshal_load

_getproperty(dispid, args, types) -> object

DISPIDとパラメータの型を指定してオブジェクトのプロパティを参照します。

アクセスするプロパティのインターフェイスを事前に知っている場合に、 DISPIDとパラメータの型を指定してプロパティを参照します。

[PARAM] dispid:
プロパティのDISPID(メソッドを一意に特定する数値)を指定 します。
[PARAM] args:
プロパティが引数を取る場合に配列で指定します。引数の順序は 最左端の引数のインデックスを0とします。引数が不要な場合は空 配列を指定します。
[PARAM] types:
プロパティが引数を取る場合に配列で引数の型を指定します。引 数の順序は最左端の引数のインデックスを0とします。型の指定 には、WIN32OLE::VARIANTの定数を利用します。引数が不 要な場合は空配列を指定します。

このメソッドはCOMアーリーバインディングを利用することで外部プロセスサー バとのラウンドトリップを減らして処理速度を向上させることを目的としたも のです。このため、DLLの形式で型情報(TypeLib)を提供しているサーバに対 してはあまり意味を持ちません。

[RETURN]
プロパティ値を返します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。
DISPID_CELLS = 238
include WIN32OLE::VARIANT
excel = WIN32OLE.new('Excel.Application')
puts excel._getproperty(558, [], []) # VisibleプロパティのDISPIDは558
workbook = excel.Workbooks.Add
sheet = workbook.Worksheets(1)
sheet._setproperty(DISPID_CELLS, [1, 2, 'hello'], [VT_I2, VT_I2, VT_BSTR])
puts sheet._getproperty(DISPID_CELLS, [1, 2], [VT_I2, VT_I2]).value  #=> 'hello'
workbook.Close(:SaveChanges => false)
excel.Quit

DISPIDはWIN32OLE_METHOD#dispidから取得できます。

[SEE_ALSO] WIN32OLE::VARIANT

_invoke(dispid, args, types) -> object | nil

DISPIDとパラメータの型を指定してオブジェクトのメソッドを呼び出します。

呼び出すメソッドのインターフェイスを事前に知っている場合に、DISPIDとパ ラメータの型を指定してメソッドを呼び出します。

このメソッドは引数の変換方法をプログラマが制御できるようにすることと、 COMアーリーバインディングを利用して外部プロセスサーバとのラウンドトリッ プを減らして処理速度を向上させることを目的としたものです。後者の目的に ついては、DLLの形式で型情報(TypeLib)を提供しているサーバに対してはあ まり意味を持ちません。そのため、型の高精度な制御が不要な場合は、直接メ ソッド名を指定したメソッド呼び出しを行うことを、プログラムの可読性の点 から推奨します。

[PARAM] dispid:
メソッドのDISPID(メソッドを一意に特定する数値)を指定し ます。
[PARAM] args:
メソッドの引数を配列で指定します。引数の順序は最左端の引数 のインデックスを0とします。引数が不要な場合は空配列を指定し ます。
[PARAM] types:
メソッドの引数の型を配列で指定します。引数の順序は最左端の 引数のインデックスを0とします。型の指定には、 WIN32OLE::VARIANTの定数を利用します。引数が不要な場 合は空配列を指定します。
[RETURN]
メソッドの返り値。ただし返り値を持たないメソッドの場合はnil。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。
excel = WIN32OLE.new('Excel.Application')
excel._invoke(302, [], []) #  DISPID 302は、Quitメソッド

MFCの制約により、バイト配列の型情報は通常 WIN32OLE::VARIANT::VT_VARIANTとなります。このような場合に、バイト 配列を与えるつもりで

include WIN32OLE::VARIANT
obj.method(DISPID, [[0, 1, 2, 3]], [VT_VARIANT])

のように記述すると、単に32ビット整数(VT_I4)の配列が送られることになり 空間効率が低下します。

引数の最終的な型がわかっている場合は、下記の例のように型指定パラメータ には実際の型を指定してください。

include WIN32OLE::VARIANT
obj.method(DISPID, [[0, 1, 2, 3]], [VT_BYREF | VT_ARRAY | VT_UI1])

なお、VB6で作成したCOMコンポーネントのパラメータに配列を与える場合は、 WIN32OLE::VARIANT::VT_BYREFの指定が必須です。

DISPIDはWIN32OLE_METHOD#dispidから取得できます。

[SEE_ALSO] WIN32OLE::VARIANT

_setproperty(dispid, args, types) -> ()

DISPIDとパラメータの型を指定してオブジェクトのプロパティを設定します。

アクセスするプロパティのインターフェイスを事前に知っている場合に、 DISPIDとパラメータの型を指定してプロパティを設定します。

このメソッドはCOMアーリーバインディングを利用することで外部プロセスサー バとのラウンドトリップを減らして処理速度を向上させることを目的としたも のです。このため、DLLの形式で型情報(TypeLib)を提供しているサーバに対 してはあまり意味を持ちません。

[PARAM] dispid:
プロパティのDISPID(メソッドを一意に特定する数値)を指定 します。
[PARAM] args:
引数を配列で指定します。引数の順序は最左端の引数のインデッ クスを0とします。プロパティに対する設定値は最右端の要素です。
[PARAM] types:
プロパティの引数の型を配列で指定します。引数の順序は最左端 の引数のインデックスを0とします。型の指定には、 WIN32OLE::VARIANTの定数を利用します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。
DISPID_CELLS = 238
include WIN32OLE::VARIANT
excel = WIN32OLE.new('Excel.Application')
puts excel._setproperty(558,      # VisibleプロパティのDISPIDは558
                       [true], [VT_BOOL])
workbook = excel.Workbooks.Add
sheet = workbook.Worksheets(1)
sheet._setproperty(DISPID_CELLS, [1, 2, 'hello'], [VT_I2, VT_I2, VT_BSTR])
puts sheet._getproperty(DISPID_CELLS, [1, 2], [VT_I2, VT_I2]).value  #=> 'hello'
workbook.Close(:SaveChanges => false)
excel.Quit

DISPIDはWIN32OLE_METHOD#dispidから取得できます。

[SEE_ALSO] WIN32OLE::VARIANT

class -> Class
type -> Class

レシーバのクラスを返します。

p "ruby".class #=> String
p 999999999999999.class #=> Bignum
p ARGV.class #=> Array
p self.class #=> Object
p Class.class #=> Class
p Kernel.class #=> Module

[SEE_ALSO] Class#superclass,Object#kind_of?,Object#instance_of?

clone -> object
dup -> object

オブジェクトの複製を作成して返します。

dup はオブジェクトの内容, taint 情報をコピーし、 clone はそれに加えて freeze, 特異メソッドなどの情報も含めた完全な複製を作成します。

clone や dup は浅い(shallow)コピーであることに注意してください。後述。

[EXCEPTION] TypeError:
TrueClass, FalseClass, NilClass, Symbol, そして Numeric クラスのインスタンスなど一部の オブジェクトを複製しようとすると発生します。
obj = "string"
obj.taint
def obj.fuga
end
obj.freeze

p(obj.equal?(obj))          #=> true
p(obj == obj)               #=> true
p(obj.tainted?)             #=> true
p(obj.frozen?)              #=> true
p(obj.respond_to?(:fuga))   #=> true

obj_c = obj.clone

p(obj.equal?(obj_c))        #=> false
p(obj == obj_c)             #=> true
p(obj_c.tainted?)           #=> true
p(obj_c.frozen?)            #=> true
p(obj_c.respond_to?(:fuga)) #=> true

obj_d = obj.dup

p(obj.equal?(obj_d))        #=> false
p(obj == obj_d)             #=> true
p(obj_d.tainted?)           #=> true
p(obj_d.frozen?)            #=> false
p(obj_d.respond_to?(:fuga)) #=> false

[SEE_ALSO] Object#initialize_copy

深いコピーと浅いコピー

clone や dup はオブジェクト自身を複製するだけで、オブジェクトの指し ている先(たとえば配列の要素など)までは複製しません。これを浅いコピー(shallow copy)といいます。

深い(deep)コピーが必要な場合には、 Marshalモジュールを利用して

Marshal.load(Marshal.dump(obj))

このように複製を作成する方法があります。ただしMarshal出来ないオブジェクトが 含まれている場合には使えません。

obj = ["a","b","c"]

obj_d = obj.dup
obj_d[0] << "PLUS"

p obj   #=> ["aPLUS", "b", "c"]
p obj_d #=> ["aPLUS", "b", "c"]

obj_m = Marshal.load(Marshal.dump(obj))
obj_m[1] << "PLUS"

p obj   #=> ["aPLUS", "b", "c"]
p obj_m #=> ["aPLUS", "bPLUS", "c"]
display(out = $stdout) -> nil

オブジェクトを out に出力します。

以下のように定義されています。

class Object
  def display(out = $stdout)
    out.print self.to_s
    nil
  end
end
[PARAM] out:
出力先のIOオブジェクトです。指定しない場合は標準出力に出力されます。
[RETURN]
nil を返します。
Object.new.display #=> #<Object:0xbb0210>

[SEE_ALSO] $stdout

each {|i|...} -> ()

オブジェクトの列挙インターフェイスを呼び出してアイテム単位にブロックを 実行します。

OLEオートメーションサーバの中には、コレクション用インターフェイスを持つ ものがあります。eachメソッドは、このようなオブジェクトの列挙メソッドを 呼び出して、アイテム毎のイテレーションを行います。

[PARAM] i:
コレクション内のアイテム
[EXCEPTION] WIN32OLERuntimeError:
selfが列挙インターフェイスをサポートしてい ない場合に通知します。
excel = WIN32OLE.new('Excel.Application')
book = excel.workbooks.add
sheets = book.worksheets(1)
cells = sheets.cells("A1:A5")
cells.each do |cell|
  cell.value = 10
end
excel.Quit
to_enum(method = :each, *args) -> Enumerable::Enumerator
enum_for(method = :each, *args) -> Enumerable::Enumerator

Enumerable::Enumerator.new(self, method, *args) を返します。

[PARAM] method:
メソッド名の文字列かシンボルです。
[PARAM] args:
呼び出すメソッドに渡される引数です。
[EXCEPTION] NameError:
存在しないメソッド名を指定すると発生します。
str = "xyz"

enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]

# protects an array from being modified
a = [1, 2, 3]
p(a.to_enum) #=> #<Enumerable::Enumerator:0xbaf7ac>

[SEE_ALSO] Enumerable::Enumerator

eql?(other) -> bool

オブジェクトと other が等しければ真を返します。Hash で二つのキー が等しいかどうかを判定するのに使われます。

このメソッドは各クラスの性質に合わせて再定義すべきです。 多くの場合、 == と同様に同値性の判定をするように再定義されていますが、 適切にキー判定ができるようにより厳しくなっている場合もあります。

デフォルトでは equal? と同じオブジェクト の同一性判定になっています。

このメソッドを再定義した時には Object#hash メソッ ドも再定義しなければなりません。

[PARAM] other:
比較するオブジェクトです。
p("foo".eql?("bar")) #=> false
p("foo".eql?("foo")) #=> true

p(4.eql?(4)) #=> true
p(4.eql?(4.0)) #=> false

[SEE_ALSO] Object#hash,Object#equal?,Object#==

equal?(other) -> bool

other が self 自身の時、真を返します。

二つのオブジェクトが同一のものかどうか調べる時に使用します。 このメソッドを再定義してはいけません。

お互いのObject#object_idが一致する かどうかを調べます。

[PARAM] other:
比較するオブジェクトです。
p("foo".equal?("bar")) #=> false
p("foo".equal?("foo")) #=> false

p(4.equal?(4)) #=> true
p(4.equal?(4.0)) #=> false

p(:foo.equal? :foo) #=> true

[SEE_ALSO] Object#object_id,Object#==,Object#eql?,Symbol

extend(*modules) -> self

引数で指定したモジュールのインスタンスメソッドを self の特異 メソッドとして追加します。

Module#include は、クラス(のインスタンス)に機能を追加します が、extend は、ある特定のオブジェクトだけにモジュールの機能を追加 したいときに使用します。

引数に複数のモジュールを指定した場合、最後 の引数から逆順に extend を行います。

[PARAM] modules:
モジュールを任意個指定します(クラスは不可)。
[RETURN]
self を返します。
module Foo
  def a
    'ok Foo'
  end
end

module Bar
  def b
    'ok Bar'
  end
end

obj = Object.new
obj.extend Foo, Bar
p obj.a #=> "ok Foo"
p obj.b #=> "ok Bar"

class Klass
  include Foo
  extend Bar
end

p Klass.new.a #=> "ok Foo"
p Klass.b     #=> "ok Bar"

extend の機能は、「特異クラスに対する Module#include」 と言い替えることもできます。 ただしその場合、フック用のメソッド が Module#extended ではなく Module#included になるという違いがあります。

# obj.extend Foo, Bar とほぼ同じ
class << obj
  include Foo, Bar
end

[SEE_ALSO] Module#extend_object,Module#include,Module#extended

freeze -> self

オブジェクトを凍結(内容の変更を禁止)します。

凍結されたオブジェクトの変更は 例外 TypeError を発生させます。 いったん凍結されたオブジェクトを元に戻す方法はありません。

凍結されるのはオブジェクトであり、変数ではありません。代入などで変数の指す オブジェクトが変化してしまうことは freeze では防げません。 freeze が防ぐのは、 `破壊的な操作' と呼ばれるもの一般です。変数への参照自体を凍結したい 場合は、グローバル変数なら Kernel.#trace_var が使えます。

[RETURN]
self を返します。
a1 = "foo".freeze
a1 = "bar"
p a1 #=> "bar"

a2 = "foo".freeze
a2.replace("bar")# can't modify frozen string (TypeError)

凍結を解除することはできませんが、Object#dup を使えばほぼ同じ内容の凍結されていない オブジェクトを得ることはできます。

a = [1].freeze
p a.frozen?     #=> true

a[0] = "foo"
p a             # can't modify frozen array (TypeError)

b = a.dup
p b             #=> [1]
p b.frozen?     #=> false

b[0] = "foo"
p b             #=> ["foo"]

[SEE_ALSO] Object#frozen?,Object#dup,Kernel.#trace_var

frozen? -> bool

オブジェクトが凍結(内容の変更を禁止)されているときに真を返します。

obj = "someone"
p obj.frozen? #=> false
obj.freeze
p obj.frozen? #=> true

[SEE_ALSO] Object#freeze

hash -> Fixnum

オブジェクトのハッシュ値を返します。Hash クラスでオブジェク トを格納するのに用いられています。

メソッド hash は Object#eql? と組み合わせて Hash クラスで利用されます。その際

A.eql?(B) ならば A.hash == B.hash

の関係を必ず満たしていなければいけません。eql? を再定義した時には必ずこちらも合わせ て再定義してください。

デフォルトでは、Object#object_id と同じ値を返します。 ただし、Fixnum, Symbol, String だけは組込みのハッ シュ関数が使用されます(これを変えることはできません)。

hash を再定義する場合は、一様に分布する任意の整数を返すようにします。

[RETURN]
ハッシュ値を返します。Fixnumに収まらない場合は切り捨てられます。
p self.hash #=> 21658870
p 0.hash #=> 1
p 0.0.hash #=> 0
p nil.hash #=> 4

p "ruby".hash #=> -241670986
p "ruby".hash #=> -241670986
p :ruby.hash #=> 103538
p :ruby.hash #=> 103538

[SEE_ALSO] Object#eql?,Object#__id__

inspect -> String

オブジェクトを人間が読める形式に変換した文字列を返します。

組み込み関数 Kernel.#p は、このメソッドの結果を使用して オブジェクトを表示します。

puts Class.new.inspect #=> #<Class:0xbafd88>
puts Time.now.inspect #=> 2007-10-15 21:01:37 +0900

[SEE_ALSO] Kernel.#p

instance_eval(expr, filename = "(eval)", lineno = 1) -> object
instance_eval {|obj| ... } -> object

オブジェクトのコンテキストで文字列 expr またはオブジェクト自身をブロックパラメータとするブロックを 評価してその結果を返します。

オブジェクトのコンテキストで評価するとは評価中の self をそのオブジェクトにして実行するということです。 また、文字列 expr やブロック中でメソッドを定義すればそのオブジェクトの特異メソッドが定義されます。

ただし、ローカル変数だけは、文字列 expr の評価では instance_eval の外側のスコープと、ブロックの評価ではそのブロックの外側のスコープと、共有します。

メソッド定義の中で instance_eval でメソッドを定義した場合は、囲むメソッドが実行されたときに 初めて instance_eval 内のメソッドが定義されます。これはメソッド定義のネストと同じです。 クラス/メソッドの定義/メソッド定義のネスト を参照してください。

[PARAM] expr:
評価する文字列です。
[PARAM] filename:
文字列を指定します。ファイル filename に文字列 expr が 書かれているかのように実行されます。スタックトレースの 表示などを差し替えることができます。
[PARAM] lineno:
文字列を指定します。行番号 lineno から文字列 expr が書かれているかのように実行されます。 スタックトレースの表示などを差し替えることができます。

例:

class Foo
  def initialize data
    @key = data
  end
private
  def do_fuga
    p 'secret'
  end
end

some = Foo.new 'XXX'
some.instance_eval{p @key} #=> "XXX"
some.instance_eval{do_fuga } #=> "secret" # private メソッドも呼び出せる

some.instance_eval 'raise' # ..:10: (eval):1:  (RuntimeError)
messg = 'unknown'
some.instance_eval 'raise messg','file.rb',999 # file.rb:999: unknown (RuntimeError)

[SEE_ALSO] Module#module_eval, Kernel.#eval

instance_exec(*args) {|*vars| ... } -> object

与えられたブロックをレシーバのコンテキストで実行します。

ブロック実行中は、 self がレシーバのコンテキストになるので レシーバの持つインスタンス変数にアクセスすることができます。

[PARAM] args:
ブロックパラメータに渡す値です。
class KlassWithSecret
  def initialize
    @secret = 99
  end
end
k = KlassWithSecret.new
# 以下で x には 5 が渡される
k.instance_exec(5) {|x| @secret + x }   #=> 104

[SEE_ALSO] Module#class_exec, Module#module_exec, Object#instance_eval

instance_of?(klass) -> bool

オブジェクトがクラス klass の直接のインスタンスである時真を返します。

obj.instance_of?(c) が成立する時には、常に obj.kind_of?(c) も成立します。

[PARAM] klass:
Classかそのサブクラスのインスタンスです。
class C < Object
end
class S < C
end

obj = S.new
p obj.instance_of?(S)       # true
p obj.instance_of?(C)       # false

[SEE_ALSO] Object#kind_of?,Object#class

instance_variable_defined?(var) -> bool

インスタンス変数 var が定義されていたら真を返します。

[PARAM] var:
インスタンス変数名を文字列か Symbol で指定します。
class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
p fred.instance_variable_defined?(:@a)    #=> true
p fred.instance_variable_defined?("@b")   #=> true
p fred.instance_variable_defined?("@c")   #=> false

[SEE_ALSO] Object#instance_variable_get,Object#instance_variable_set,Object#instance_variables

instance_variable_get(var) -> object|nil

オブジェクトのインスタンス変数の値を取得して返します。

インスタンス変数が定義されていなければ nil を返します。

[PARAM] var:
インスタンス変数名を文字列か Symbol で指定します。
class Foo
  def initialize
    @foo = 1
  end
end

obj = Foo.new
p obj.instance_variable_get("@foo")     #=> 1
p obj.instance_variable_get(:@foo)      #=> 1
p obj.instance_variable_get(:@bar)      #=> nil

[SEE_ALSO] Object#instance_variable_set,Object#instance_variables,Object#instance_variable_defined?

instance_variable_set(var, value) -> object

オブジェクトのインスタンス変数 var に値 value を設定します。

インスタンス変数が定義されていなければ新たに定義されます。

[PARAM] var:
インスタンス変数名を文字列か Symbol で指定します。
[PARAM] value:
設定する値です。
[RETURN]
value を返します。
obj = Object.new
p obj.instance_variable_set("@foo", 1)  #=> 1
p obj.instance_variable_set(:@foo, 2)   #=> 2
p obj.instance_variable_get(:@foo)      #=> 2

[SEE_ALSO] Object#instance_variable_get,Object#instance_variables,Object#instance_variable_defined?

instance_variables -> [String]

オブジェクトのインスタンス変数名を文字列の配列として返します。

obj = Object.new
obj.instance_eval { @foo, @bar = nil }
p obj.instance_variables

#=> ["@foo", "@bar"]

[SEE_ALSO] Object#instance_variable_get,Kernel.#local_variables,Kernel.#global_variables,Module.constants,Module#constants,Module#class_variables

invoke(name, *args) -> object | nil

メソッド名を指定してオブジェクトのメソッドを呼び出します。

OLEオートメーションサーバのメソッドを動的に呼び出したい場合に利用します。

なお、OLEオートメーションの仕様により、メソッド名の大文字、小文字は区別 されません。

[PARAM] name:
メソッド名を文字列で指定します。
[PARAM] args:
メソッドの引数を指定します。また、最後の引数にHashを 与えることで、名前付き引数を指定できます。この場合、キーに 文字列でパラメータ名、値に引数を指定します。
[RETURN]
メソッドの返り値。ただし返り値を持たないメソッドの場合はnil。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。 excel = WIN32OLE.new('Excel.Application') workbook = excel.workbooks.invoke('Open', 'FileName' => 'c:\\users\\public\\test.xml', 'ReadOnly' => true, 'Password' => 'secret') excel.invoke('Quit')

このリストは、以下の記述と同等です。

excel = WIN32OLE.new('Excel.Application')
workbook = excel.workbooks.Open('FileName' => 'c:\\users\\public\\test.xml',
                                'ReadOnly' => true,
                                'Password' => 'secret')
excel.Quit
is_a?(mod) -> bool
kind_of?(mod) -> bool

オブジェクトが指定されたクラス mod かそのサブクラスのインスタンスであるとき真を返します。

また、オブジェクトがモジュール mod をインクルードしたクラスかそのサブクラス のインスタンスである場合にも真を返します。 上記のいずれでもない場合に false を返します。

[PARAM] mod:
クラスやモジュールなど、Moduleかそのサブクラスのインスタンスです。
module M
end
class C < Object
  include M
end
class S < C
end

obj = S.new
p obj.is_a?(S)       # true
p obj.is_a?(C)       # true
p obj.is_a?(Object)  # true
p obj.is_a?(M)       # true
p obj.is_a?(Hash)    # false

[SEE_ALSO] Object#instance_of?,Module#===,Object#class

marshal_dump -> object

Marshal.#dump を制御するメソッドです。

Marshal.dump(some) において、出力するオブジェクト some がメソッド marshal_dump を 持つ場合には、その返り値がダンプされたものが Marshal.dump(some) の返り値となります。

marshal_dump/marshal_load の仕組みは Ruby 1.8.0 から導入されました。 これから書くプログラムでは _dump/_load ではなく marshal_dump/marshal_load を使うべきです。

[RETURN]
任意のオブジェクトで marshal_load の引数に利用できます。
class Foo
  def initialize(arg)
    @foo = arg
  end
  def marshal_dump
    @foo
  end
  def marshal_load(obj)
    p obj
    @foo = obj
  end
end
foo = Foo.new(['foo', 'bar'])
p foo                      #=> #<Foo:0xbaf3b0 @foo=["foo", "bar"]>
dms = Marshal.dump(foo)
p dms                      #=> "\004\bU:\bFoo[\a\"\bfoo\"\bbar"
result = Marshal.load(dms) #=> ["foo", "bar"] # marshal_load の引数
p result                   #=> #<Foo:0xbaf2ac @foo=["foo", "bar"]>

インスタンス変数の情報は普通マーシャルデータに含まれるので、 上例のように marshal_dump を定義する必要はありません (ただし marshal_dump を定義するとインスタンス変数の情報は ダンプされなくなるので、marshal_dump/marshal_load で扱う必要があります)。 marshal_dump/marshal_load はより高度な制御を行いたい場合や 拡張ライブラリで定義したクラスのインスタンスがインスタンス変数以外 に情報を保持する場合に利用します。

特に、marshal_dump/marshal_load を定義したオブジェクトは 特異メソッドが定義されていてもマーシャルできるようになります (特異メソッドの情報が自動的に dump されるようになるわけではなく、 marshal_dump/marshal_load によりそれを実現する余地があるということです)。

[SEE_ALSO] Object#marshal_load, Marshal

marshal_load(obj) -> object

Marshal.#load を制御するメソッドです。

some のダンプ結果(Marshal.dump(some)) をロードする(Marshal.load(Marshal.dump(some)))に は some がメソッド marshal_load を持っていなければなりません。 このとき、marshal_dump の返り値が marshal_load の引数に利用されます。 marshal_load 時の self は、生成されたばかり(Class#allocate されたばかり) の状態です。

marshal_dump/marshal_load の仕組みは Ruby 1.8.0 から導入されました。 これから書くプログラムでは _dump/_load ではなく marshal_dump/marshal_load を使うべきです。

[PARAM] obj:
marshal_dump の返り値のコピーです。
[RETURN]
返り値は無視されます。

[SEE_ALSO] Object#marshal_dump, Marshal

method(name) -> Method

オブジェクトのメソッド name をオブジェクト化した Method オブジェクトを返します。

[PARAM] name:
メソッド名をSymbol またはStringで指定します。
[EXCEPTION] NameError:
定義されていないメソッド名を引数として与えると発生します。
me = -365.method(:abs)
p me #=> #<Method: Fixnum#abs>
p me.call #=> 365

[SEE_ALSO] Module#instance_method,Method,Object#__send__,Kernel.#eval

method_missing(id, *args) -> object | nil

WIN32OLE#invokeメソッドを実行します。

WIN32OLEのインスタンスに対して、このリファレンスに明記されていないメソッ ドを呼び出した場合、OLEオートメーションサーバのメソッド(プロパティ)呼 び出しと解釈します。

[PARAM] id:
メソッド名をシンボルで指定します。
[PARAM] args:
メソッドの引数を指定します。
[RETURN]
メソッドの返り値。ただし返り値を持たないメソッドの場合はnil。
[EXCEPTION] RuntimeError:
idが有効なシンボルではありません。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。

WIN32OLEはOLEオートメーションオブジェクトのメソッド呼び出しを method_missingを利用して実行します。このためWIN32OLEを継承するクラスを 作成してmethod_missingをオーバーライドする場合、superを呼び出してくださ い。

[SEE_ALSO] WIN32OLE#invoke

method_missing(name, *args) -> object

呼びだされたメソッドが定義されていなかった時、Rubyインタプリタがこのメソッド を呼び出します。

呼び出しに失敗したメソッドの名前 (Symbol) が name に その時の引数が第二引数以降に渡されます。

デフォルトではこのメソッドは例外 NameError を発生させます。

[PARAM] name:
未定義メソッドの名前(シンボル)です。
[PARAM] args:
未定義メソッドに渡された引数です。
[RETURN]
ユーザー定義の method_missing メソッドの返り値が未定義メソッドの返り値で あるかのように見えます。
class Foo
  def initialize(data)
    @data = data
  end
  def method_missing(name, lang)
    if name.to_s =~ /\Afind_(\d+)_in\z/
      if @data[lang]
        p @data[lang][$1.to_i]
      else
        raise "#{lang} unknown"
      end
    else
      super
    end
  end
end

dic = Foo.new({:English => %w(zero one two), :Esperanto => %w(nulo unu du)})
dic.find_2_in :Esperanto #=> "du"
methods(include_inherited = true) -> [String]

そのオブジェクトに対して呼び出せるメソッド名の一覧を返します。 このメソッドは public メソッドおよび protected メソッドの名前を返します。

ただし特別に、引数が偽の時は Object#singleton_methods(false) と同じになっています。

[PARAM] include_inherited:
引数が偽の時は Object#singleton_methods(false) と同じになります。
#例1:

class Parent
  private;   def private_parent()   end
  protected; def protected_parent() end
  public;    def public_parent()    end
end

class Foo < Parent
  private;   def private_foo()   end
  protected; def protected_foo() end
  public;    def public_foo()    end
end

obj = Foo.new
class <<obj
    private;   def private_singleton()   end
    protected; def protected_singleton() end
    public;    def public_singleton()    end
end

# あるオブジェクトの応答できるメソッドの一覧を得る。
p obj.methods(false)
p obj.public_methods(false)
p obj.private_methods(false)
p obj.protected_methods(false)

#実行結果

["public_singleton", "protected_singleton"]
["public_foo", "public_singleton"]
["private_foo", "private_singleton"]
["protected_foo", "protected_singleton"]

#例2:

# あるオブジェクトの応答できるメソッドの一覧を得る。
# 自身のクラスの親クラスのインスタンスメソッドも含めるために true を指定して
# いるが、Object のインスタンスメソッドは一覧から排除している。
p obj.methods(true)           - Object.instance_methods(true)
p obj.public_methods(true)    - Object.public_instance_methods(true)
p obj.private_methods(true)   - Object.private_instance_methods(true)
p obj.protected_methods(true) - Object.protected_instance_methods(true)

#実行結果

["public_foo", "public_parent", "protected_singleton", "public_singleton", "protected_foo", "protected_parent"]
["public_foo", "public_parent", "public_singleton"]
["private_singleton", "private_foo", "private_parent"]
["protected_singleton", "protected_foo", "protected_parent"]

[SEE_ALSO] Module#instance_methods,Object#singleton_methods

nil? -> bool

レシーバが nil であれば真を返します。

p false.nil? #=> false
p nil.nil? #=> true

[SEE_ALSO] NilClass

ole_activex_initialize -> nil

ActiveXコントロール用の初期化を行います。

ole_activex_initializeメソッドは、スクリプト内でActiveXコントロールを利 用できるように、オブジェクトが持つ永続化データを初期化します。

ActiveXコントロール(OCX)は、主にUI用に利用されるOLEオートメーションサー バです。ActiveXコントロールは、IDEを利用した開発時と、プログラムの実行 時の2種類の実行モードを持ちます。これは、開発時の設定を永続化するためで す。

幾つかのActiveXコントロールは、上記の動作を前提に組まれているため、実行 に先だって永続化データの転送をデータの有無と関係なく要求します。この場 合、もし永続化データを初期化しないと、実行時モード状態へ遷移せず、後続 のメソッド呼び出しがすべてエラーとなります。

[EXCEPTION] WIN32OLERuntimeError:
オブジェクトがActiveXコントロールの永続化イ ンターフェイスを持たない場合に通知します。
obj = WIN32OLE.new("ProgID_or_GUID_of_ActiveX_Control")
obj.ole_activex_initialize
obj.method(...)

なお、生成したOLEオートメーションサーバが永続化データの初期化を必要とす るActiveXコントロールか、そうでないかを簡単に区別する方法はありません。 そのため、とりあえず普通にメソッドを呼び出し、その結果 WIN32OLERuntimeErrorが通知され、メッセージにHRESULT 0x8000ffffと示され ている場合にのみ、オブジェクト生成直後に当メソッドを呼び出してみてくだ さい。

また、オブジェクトによっては、当メソッドの呼び出しにより後続のデータを 要求してハングアップする場合があります。その場合は、Ctrl-Cなどによって 実行を中止してください。

ole_free -> ()

selfが参照するCOMオブジェクトを解放します。

selfが参照するCOMオブジェクトのIUnknown::Releaseを呼び出すことで、COMオ ブジェクトを開放します。ole_freeを呼び出した後は、このオブジェクトに対 する操作は行えません。

excel = WIN32OLE.new('Excel.Application')
excel.ole_free  # オブジェクトの解放
excel.Quit      #=> RuntimeError (failed to get Dispatch Interface)

通常は利用されなくなったWIN32OLEオブジェクトはGCのタイミングで自動的に 解放されるため、当メソッドを呼び出す必要はありません。Officeのような外 部プロセスサーバ呼び出し時に、スクリプト終了後もサーバが解放されない場 合に強制的にサーバを終了するために当メソッドを利用できます。ただし、現 実には途中で生成される子オブジェクトからの逆参照などがあるため、 WIN32OLEがIUnknown::Releaseを呼び出してもオブジェクトが解放されるとは限 りません。

excel = WIN32OLE.new('Excel.Application')
workbook = excel.Workbooks.Open('workbook.xls')
workbook.Close(:SaveChanges => false)
workbook.ole_free
excel.ole_free
# この時点でExcel.EXEは終了しない

上の例では、excel.Workbooks.Openの行で、excel.Workbooksオブジェクトが生 成されています。しかし、後続の処理で該当オブジェクトが解放されていない ため、Workbooksオブジェクトによって参照されているexcelオブジェクトは解 放されません。それに対して下の例では正しく解放されます。

excel = WIN32OLE.new('Excel.Application')
books = excel.Workbooks
workbook = books.Open('workbook.xls')
books.ole_free
workbook.Close(:SaveChanges => false)
workbook.ole_free
excel.ole_free
ole_func_methods -> [WIN32OLE_METHOD]

オブジェクトのファンクション情報をWIN32OLE_METHODの配列として返し ます。

ole_func_methodsメソッドは、OLEオートメーションサーバのメソッドのうちファ ンクション(何らかの機能的な操作)に属するものをWIN32OLE_METHODの 配列として返します。

[RETURN]
WIN32OLE_METHODの配列。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 型情報ライブラリ(TypeLib)が提供されていない場合などに発生します。
excel = WIN32OLE.new('Excel.Application')
excel.visible = true
excel.ole_func_methods.each do |fun|
  if fun.name.upcase == 'QUIT'
    excel._invoke(fun.dispid, [], [])
    break
  end
end

[SEE_ALSO] WIN32OLE#ole_methods, WIN32OLE#ole_get_methods, WIN32OLE#ole_put_methods

ole_get_methods -> [WIN32OLE_METHOD]

オブジェクトの参照可能プロパティ情報をWIN32OLE_METHODの配列として 返します。

ole_get_methodsメソッドは、OLEオートメーションサーバのメソッドのうち読 み取り可能なプロパティをWIN32OLE_METHODの配列として返します。

[RETURN]
WIN32OLE_METHODの配列。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 型情報ライブラリ(TypeLib)が提供されていない場合などに発生します。
excel = WIN32OLE.new('Excel.Application')
excel.ole_get_methods.each do |prop|
  begin
    puts "#{prop.name}=#{excel._getproperty(prop.dispid, [], [])}"
  rescue WIN32OLERuntimeError
    puts "can't read #{prop.name} property"
  end
end

[SEE_ALSO] WIN32OLE#ole_methods, WIN32OLE#ole_func_methods, WIN32OLE#ole_put_methods

ole_method(method) -> WIN32OLE_METHOD
ole_method_help(method) -> WIN32OLE_METHOD

メソッド名を指定して対応するWIN32OLE_METHODオブジェクトを取得しま す。

OLEオートメーションの仕様により、メソッド名の大文字、小文字は区別されま せん。

[PARAM] method:
メソッド情報を取り出す対象のメソッド名を文字列で指定します。
[RETURN]
WIN32OLE_METHODオブジェクト。
[EXCEPTION] WIN32OLERuntimeError:
指定したメソッド名が未定義あるいは型情報ラ イブラリ(TypeLib)が提供されていない場合など に発生します。
excel = WIN32OLE.new('Excel.Application')
method = excel.ole_method_help('Quit')
ole_methods -> [WIN32OLE_METHOD]

オブジェクトのメソッド情報をWIN32OLE_METHODの配列として返します。

ole_methodsメソッドは、OLEオートメーションサーバが提供するすべてのメソッ ドをWIN32OLE_METHODの配列として返します。

[RETURN]
WIN32OLE_METHODの配列。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 型情報ライブラリ(TypeLib)が提供されていない場合などに発生します。
excel = WIN32OLE.new('Excel.Application')
methods = excel.ole_methods

[SEE_ALSO] WIN32OLE#ole_func_methods, WIN32OLE#ole_put_methods

ole_obj_help -> WIN32OLE_TYPE | nil
ole_type -> WIN32OLE_TYPE | nil

WIN32OLE_TYPEオブジェクトを返します。

WIN32OLE_TYPEオブジェクトは、WIN32OLEオブジェクトの文書情報と型情 報を保持するオブジェクトです。

[RETURN]
オブジェクトに関連するWIN32OLE_TYPEオブジェクトを返します。 オブジェクトがドキュメント情報を持たない場合はnilを返します。
excel = WIN32OLE.new('Excel.Application')
tobj = excel.ole_obj_help

[SEE_ALSO] WIN32OLE_TYPE

ole_put_methods -> [WIN32OLE_METHOD]

オブジェクトの設定可能プロパティ情報をWIN32OLE_METHODの配列として 返します。

ole_put_methodsメソッドは、OLEオートメーションサーバのメソッドのうちプ ロパティ設定メソッドに属するものをWIN32OLE_METHODの配列として返し ます。

[RETURN]
WIN32OLE_METHODの配列。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 型情報ライブラリ(TypeLib)が提供されていない場合などに発生します。
excel = WIN32OLE.new('Excel.Application')
properties = excel.ole_put_methods

[SEE_ALSO] WIN32OLE#ole_methods, WIN32OLE#ole_func_methods, WIN32OLE#ole_get_methods

private_methods(include_inherited = true) -> [String]

そのオブジェクトが理解できる private メソッド名の一覧を返します。

[PARAM] include_inherited:
偽となる値を指定すると自身のクラスのスーパークラスで定義されたメソッドを除きます。

[SEE_ALSO] Module#private_instance_methods,Object#methods,Object#singleton_methods

protected_methods(include_inherited = true) -> [String]

そのオブジェクトが理解できる protected メソッド名の一覧を返します。

[PARAM] include_inherited:
偽となる値を指定すると自身のクラスのスーパークラスで定義されたメソッドを除きます。

[SEE_ALSO] Module#protected_instance_methods,Object#methods,Object#singleton_methods

public_methods(include_inherited = true) -> [String]

そのオブジェクトが理解できる public メソッド名の一覧を返します。

[PARAM] include_inherited:
偽となる値を指定すると自身のクラスのスーパークラスで定義されたメソッドを除きます。

[SEE_ALSO] Module#public_instance_methods,Object#methods,Object#singleton_methods

respond_to?(name, include_private = false) -> bool

オブジェクトがメソッド name を持つとき真を返します。

オブジェクトが メソッド name を持つというのは、 オブジェクトが メソッド name に応答することができることをいいます。

[PARAM] name:
Symbol または文字列で指定するメソッド名です。
[PARAM] include_private:
private メソッドを確認の対象に含めるかを true か false で指定します。省略した場合は false(含めな い) を指定した事になります。
class F
  def hello
    "Bonjour"
  end
end

class D
private
  def hello
    "Guten Tag"
  end
end
list = [F.new,D.new]

list.each{|it| puts it.hello if it.respond_to?(:hello)}
#=> Bonjour

list.each{|it| it.instance_eval("puts hello if it.respond_to?(:hello, true)")}
#=> Bonjour
#   Guten Tag

[SEE_ALSO] Module#method_defined?

setproperty(name, val) -> ()
setproperty(name, args..., val) -> ()

オブジェクトのプロパティを設定します。

プロパティ名を指定してOLEオートメーションオブジェクトのプロパティ (Rubyの属性に相当)を設定します。

なお、OLEオートメーションの仕様により、プロパティ名の大文字、小文字は区 別されません。

[PARAM] name:
プロパティ名を文字列で指定します。
[PARAM] val:
プロパティに設定する値を指定します。
[PARAM] args:
集合的なプロパティに対する設定項目を特定するための引数を指 定します。
[EXCEPTION] WIN32OLERuntimeError:
オートメーションサーバの呼び出しに失敗しました。 理由はメッセージのHRESULTを調べてください。

OLEオートメーションのプロパティはRubyの属性と異なり、パラメータを取るこ とができます。

たとえばExcelのWorksheetオブジェクトのCellsプロパティは桁位置と行番号の 2つのパラメータを取ります。

これはVBでは次のように記述できます。

sheet.Cells(1, 1) = sheet.Cells(1, 2) ' セルB1の内容をセルA1へ

Rubyでは上記のコードの右辺をVBと同じく「sheet.Cells(1, 2)」のように記述 できますが、左辺の記述はできません。

そのため、次の例のようにsetpropertyメソッドを利用して、パラメータ付きプ ロパティを設定します。

excel = WIN32OLE.new('Excel.Application')
excel.visible = true
sheet = excel.Workbooks.Add.Worksheets(1)
sheet.setproperty('Cells', 1, 2, 32)
sheet.setproperty('Cells', 1, 1, sheet.Cells(1, 2))
singleton_methods(inherited_too = true) -> [String]

そのオブジェクトに対して定義されている特異メソッド名 (public あるいは protected メソッド) の一覧を返します。

クラスメソッド(Classのインスタンスの特異メソッド)に関しては 引数が真のとき、スーパークラスのクラスメソッドも対象になります。

singleton_methods(false) は、Object#methods(false) と同じです。

[PARAM] inherited_too:
引数が真のとき、スーパークラスのクラスメソッドも対象になります。これが意味を持つのは self がクラスオブジェクトであるときだけです。
#例1:

Parent = Class.new

class <<Parent
  private;   def private_class_parent() end
  protected; def protected_class_parent() end
  public;    def public_class_parent() end
end

Foo = Class.new(Parent)

class <<Foo
  private;   def private_class_foo() end
  protected; def protected_class_foo() end
  public;    def public_class_foo() end
end

module Bar
  private;   def private_bar()   end
  protected; def protected_bar() end
  public;    def public_bar()    end
end

obj = Foo.new
class <<obj
  include Bar
  private;   def private_self()   end
  protected; def protected_self() end
  public;    def public_self()    end
end

# あるオブジェクトの特異メソッドの一覧を得る。
p obj.singleton_methods(false)
p obj.methods(false)
p Foo.singleton_methods(false)

#実行結果

["public_self", "protected_self"]
["public_self", "protected_self"]
["public_class_foo", "protected_class_foo"]


#例2:

# あるオブジェクトの特異メソッドの一覧を得る。
# 親クラスのクラスメソッドも含まれるよう true を指定したが、
# Object のクラスメソッドは一覧から排除している。

p obj.singleton_methods(true)
p Foo.singleton_methods(true) - Object.singleton_methods(true)

#実行結果

["public_bar", "public_self", "protected_bar", "protected_self"]
["public_class_foo", "public_class_parent", "protected_class_foo", "protected_class_parent"]

[SEE_ALSO] Object#methods,Object#extend

taint -> self

オブジェクトの「汚染マーク」をセットします。

環境変数(ENVで得られる文字列)など一部のオブジェクトは最初から汚染されています。 オブジェクトの汚染に関してはセキュリティモデルを参照してください。

$SAFE = 1

some = "puts '@&%&(#!'"
p some.tainted? #=> false
eval(some) #=> @&%&(#!

some.taint
p some.tainted? #=> true
eval(some) # Insecure operation - eval (SecurityError)

some.untaint
p some.tainted? #=> false
eval(some) #=> @&%&(#!

p ENV['OS'].tainted? #=> true

[SEE_ALSO] Object#tainted?,Object#untaint,Object#freeze

tainted? -> bool

オブジェクトの「汚染マーク」がセットされている時真を返します。

オブジェクトの汚染に関してはセキュリティモデルを参照してください。

p String.new.tainted? #=> false
p ENV['OS'].tainted? #=> true

[SEE_ALSO] Object#taint,Object#untaint

tap {|x| ... } -> self

self を引数としてブロックを評価し、self を返します。

メソッドチェインの途中で直ちに操作結果を表示するために メソッドチェインに "入り込む" ことが、このメソッドの主目的です。

(1..10)                    .tap {|x| puts "original: #{x.inspect}"}.
   to_a                    .tap {|x| puts "array: #{x.inspect}"}.
   select {|x| x % 2 == 0} .tap {|x| puts "evens: #{x.inspect}"}.
   map { |x| x * x }       .tap {|x| puts "squares: #{x.inspect}"}
to_a -> Array

オブジェクトを配列に変換した結果を返します。

配列に変換できない(to_ary を持たない)オブジェクトは、自身のみを含む長さ 1 の配 列に変換されます。 このメソッドは、将来 Object のメソッドからは取り除かれます。 なので to_a を使用する場合、

  • すべてのオブジェクトに to_a が定義されているという期待はしない。
  • ユーザー定義のクラスには必要に応じて自分で定義する

などということが必要です。

p( {'a'=>1}.to_a )  # [["a", 1]]
p ['array'].to_a    # ["array"]
p 1.to_a            # [1]       (warning: default `to_a' will be obsolete)
p nil.to_a          # []

[SEE_ALSO] Object#to_ary,Kernel.#Array

to_ary -> Array

オブジェクトの Array への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • 配列が使われるすべての場面で代置可能であるような、
  • 配列そのものとみなせるようなもの

という厳しいものになっています。

class Foo
 def to_ary
   [3,4]
 end
end

it = Foo.new
p([1,2] + it) #=> [1, 2, 3, 4]

[SEE_ALSO] Object#to_a,Kernel.#Array

to_hash -> Hash

オブジェクトの Hash への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • ハッシュが使われるすべての場面で代置可能であるような、
  • ハッシュそのものとみなせるようなもの

という厳しいものになっています。

class Foo
 def to_hash
   {'as' => 24}
 end
end

it = Foo.new
p({:as => 12}.merge(it)) #=> {"as"=>24, :as=>12}
to_int -> Integer

オブジェクトの Integer への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • 整数が使われるすべての場面で代置可能であるような、
  • 整数そのものとみなせるようなもの

という厳しいものになっています。

class Foo
 def to_int
   666
 end
end

it = Foo.new
p(9**9 & it) #=> 8

[SEE_ALSO] Kernel.#Integer

to_io -> IO

オブジェクトの IO への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • IOオブジェクトが使われるすべての場面で代置可能であるような、
  • IOオブジェクトそのものとみなせるようなもの

という厳しいものになっています。

to_proc -> Proc

オブジェクトの Proc への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

def doing
  yield
end

class Foo
 def to_proc
   Proc.new{p 'ok'}
 end
end

it = Foo.new
doing(&it) #=> "ok"
to_regexp -> Regexp

オブジェクトの Regexp への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • 正規表現が使われるすべての場面で代置可能であるような、
  • 正規表現そのものとみなせるようなもの

という厳しいものになっています。

class Foo
 def to_regexp
   /[\d]+/
 end
end

it = Foo.new
p Regexp.union(/^at/, it) #=> /(?-mix:^at)|(?-mix:[\d]+)/
to_s -> String

オブジェクトの文字列表現を返します。

Kernel.#printKernel.#sprintf は文字列以外の オブジェクトが引数に渡された場合このメソッドを使って文字列に変換し ます。

class Foo
  def initialize num
    @num = num
  end
end
it = Foo.new(40)

puts it #=> #<Foo:0x2b69110>

class Foo
 def to_s
   "Class:Foo Number:#{@num}"
 end
end

puts it #=> Class:Foo Number:40

[SEE_ALSO] Object#to_str,Kernel.#String

to_str -> String

オブジェクトの String への暗黙の変換が必要なときに内部で呼ばれます。 デフォルトでは定義されていません。

説明のためここに記載してありますが、 このメソッドは実際には Object クラスには定義されていません。 必要に応じてサブクラスで定義すべきものです。

このメソッドを定義する条件は、

  • 文字列が使われるすべての場面で代置可能であるような、
  • 文字列そのものとみなせるようなもの

という厳しいものになっています。

class Foo
 def to_str
   'Edition'
 end
end

it = Foo.new
p('Second' + it) #=> "SecondEdition"

[SEE_ALSO] Object#to_s,Kernel.#String

untaint -> self

オブジェクトの「汚染マーク」を取り除きます。

汚染マークを取り除くことによる危険性はプログラマが責任を負う必要が あります。

オブジェクトの汚染に関してはセキュリティモデルを参照してください。

[EXCEPTION] SecurityError:
セキュリティレベルが3以上の時にこのメソッドを使用すると発生します。

[SEE_ALSO] Object#taint,Object#tainted?

privateメソッド

initialize(*args, &block) -> object

ユーザ定義クラスのオブジェクト初期化メソッド。

このメソッドは Class#new から新しく生成されたオブ ジェクトの初期化のために呼び出されます。他の言語のコンストラクタに相当します。 デフォルトの動作ではなにもしません。

initialize には Class#new に与えられた引数がそのまま渡されます。

サブクラスではこのメソッドを必要に応じて再定義されること が期待されています。

initialize という名前のメソッドは自動的に private に設定され ます。

[PARAM] args:
初期化時の引数です。
[PARAM] block:
初期化時のブロック引数です。必須ではありません。
class Foo
  def initialize name
    puts "initialize Foo"
    @name = name
  end
end

class Bar < Foo
  def initialize name, pass
    puts "initialize Bar"
    super name
    @pass = pass
  end
end

it = Bar.new('myname','0500')
p it
#=> initialize Bar
#   initialize Foo
#   #<Bar:0x2b68f08 @name="myname", @pass="0500">

[SEE_ALSO] Class#new

initialize_copy(obj) -> object

(拡張ライブラリによる) ユーザ定義クラスのオブジェクトコピーの初期化メソッド。

このメソッドは self を obj の内容で置き換えます。ただ し、self のインスタンス変数や特異メソッドは変化しません。 Object#clone, Object#dupの内部で使われています。

initialize_copy は、Ruby インタプリタが知り得ない情報をコピーするた めに使用(定義)されます。例えば C 言語でクラスを実装する場合、情報 をインスタンス変数に保持させない場合がありますが、そういった内部情 報を initialize_copy でコピーするよう定義しておくことで、dup や clone を再定義する必要がなくなります。

デフォルトの Object#initialize_copy は、 freeze チェックおよび型のチェックを行い self を返すだけのメソッドです。

initialize_copy という名前のメソッドは 自動的に private に設定されます。

[EXCEPTION] TypeError:
レシーバが freeze されているか、obj のクラスがレシーバ のクラスと異なる場合に発生します。

[SEE_ALSO] Object#clone,Object#dup

以下に例として、dup や clone がこのメソッドをどのように利用しているかを示します。

obj.dup は、新たに生成したオブジェクトに対して initialize_copy を呼び

obj2 = obj.class.allocate
obj2.initialize_copy(obj)

obj2 に対してさらに obj の汚染状態、インスタンス変数、ファイナライ ザをコピーすることで複製を作ります。 obj.clone は、さらに 特異メソッドのコピーも行います。

obj = Object.new
class <<obj
  attr_accessor :foo
  def bar
    :bar
  end
end

def check(obj)
  puts "instance variables: #{obj.inspect}"
  puts "tainted?: #{obj.tainted?}"
  print "singleton methods: "
  begin
    p obj.bar
  rescue NameError
    p $!
  end
end

obj.foo = 1
obj.taint

check Object.new.send(:initialize_copy, obj)
        #=> instance variables: #<Object:0x4019c9d4>
        #   tainted?: false
        #   singleton methods: #<NoMethodError: ...>
check obj.dup
        #=> instance variables: #<Object:0x4019c9c0 @foo=1>
        #   tainted?: true
        #   singleton methods: #<NoMethodError: ...>
check obj.clone
        #=> instance variables: #<Object:0x4019c880 @foo=1>
        #   tainted?: true
        #   singleton methods: :bar
remove_instance_variable(name) -> object

オブジェクトからインスタンス変数 name を取り除き、そのインス タンス変数に設定されていた値を返します。

[PARAM] name:
削除するインスタンス変数の名前をシンボルか文字列で指定します。
[EXCEPTION] NameError:
オブジェクトがインスタンス変数 name を持たない場合に発生します。
class Foo
  def foo
    @foo = 1
    p remove_instance_variable(:@foo) #=> 1
    p remove_instance_variable(:@foo) # instance variable @foo not defined (NameError)
  end
end
Foo.new.foo

[SEE_ALSO] Module#remove_class_variable,Module#remove_const

singleton_method_added(name) -> object

特異メソッドが追加された時にインタプリタから呼び出されます。

通常のメソッドの追加に対するフックには Module#method_addedを使います。

[PARAM] name:
追加されたメソッド名が Symbol で渡されます。
class Foo
  def singleton_method_added(name)
    puts "singleton method \"#{name}\" was added"
  end
end

obj = Foo.new
def obj.foo
end

#=> singleton method "foo" was added

[SEE_ALSO] Module#method_added,Object#singleton_method_removed,Object#singleton_method_undefined

singleton_method_removed(name) -> object

特異メソッドが Module#remove_method に より削除された時にインタプリタから呼び出されます。

通常のメソッドの削除に対するフックには Module#method_removedを使います。

[PARAM] name:
削除されたメソッド名が Symbol で渡されます。
class Foo
  def singleton_method_removed(name)
    puts "singleton method \"#{name}\" was removed"
  end
end

obj = Foo.new
def obj.foo
end

class << obj
  remove_method :foo
end

#=> singleton method "foo" was removed

[SEE_ALSO] Module#method_removed,Object#singleton_method_added,Object#singleton_method_undefined

singleton_method_undefined(name) -> object

特異メソッドが Module#undef_method または undef により未定義にされた時にインタプリタから呼び出されます。

通常のメソッドの未定義に対するフックには Module#method_undefined を使います。

[PARAM] name:
未定義にされたメソッド名が Symbol で渡されます。
class Foo
  def singleton_method_undefined(name)
    puts "singleton method \"#{name}\" was undefined"
  end
end

obj = Foo.new
def obj.foo
end
def obj.bar
end

class << obj
  undef_method :foo
end
obj.instance_eval {undef bar}

#=> singleton method "foo" was undefined
#   singleton method "bar" was undefined

[SEE_ALSO] Module#method_undefined,Object#singleton_method_added,Object#singleton_method_removed , クラス/メソッドの定義/undef

定数

ARGV -> [object]

直前のメソッド呼び出しの引数を格納した配列です。

OLEオートメーションでは呼び出し先が引数に対して値を設定できます。しかし、 Rubyのメソッド引数は値のみを取るため、そのままでは呼び出し先が設定した 値を参照できません。このような場合、ARGVを参照することで呼び出し先の設 定値を参照できます。

以下のリストは、VBで開発したオブジェクトのメソッド呼び出しを例としてい ます。このメソッド(Accm)は、第1引数で指定した演算を第2引数と第3引数に 適用し、結果を第2引数に設定します。

' VB (OLE Automation server)
Public Sub Accm(ByVal Operator, ByRef Accumulator, ByVal Operand)
    If Operator = "*" Then
        Accmulator = Accmulator * Operand
    Else If Operator = "+" Then
        Accmulator = Accmulator + Operand
    End If
End Sub

# Ruby
x = 10
obj.Accm '*', x, 11
p x               # => 10 …… 呼び出しによって影響を受けない
p WIN32OLE::ARGV  # => ['*', 110, 11] …… 結果はARGVの対応する引数に反映される
obj.Accm '+', 10, 11
p WIN32OLE::ARGV  # => ['+', 21, 11]

直前のメソッド呼び出しが例外となった場合、ARGVの設定内容は呼び出し前の 状態が保たれます。つまり、WIN32OLE自身がARGVの内容を消去するのは、メソッ ド呼び出しに成功した場合のみです。このため最後のメソッド呼び出しが引数 にオブジェクトを返すタイプのメソッドだった場合、GCにオブジェクトを回収 させるために、呼び出し側でARGVを消去してください。

' VB (OLE Automation server)
Public Sub GetInterface(ByRef obj)
    Set Obj = New OleObject
End Sub

# Ruby
obj.GetInterface nil   # 引数の数を合わせるためダミー引数を指定
WIN32OLE::ARGV.clear   # 通常は、後続のメソッド呼び出しによって消去される
CP_ACP -> Fixnum

Windows既定のANSIコードページ(0)を示します。

CP_MACCP -> Fixnum

Macintoshコードページ(2)を示します。

CP_OEMCP -> Fixnum

OEMコードページ(1)を示します。

CP_SYMBOL -> Fixnum

文字コードの変換にシンボルを利用することを示します(42)。

CP_THREAD_ACP -> Fixnum

現在実行中のスレッドの既定のコードページ(3)を示します。

Windowsのコードページはスレッド毎に異なる値を設定できます。

CP_UTF7 -> Fixnum

文字コードの変換にUTF-7を利用することを示します(65000)。

CP_UTF8 -> Fixnum

文字コードの変換にUTF-8を利用することを示します(65001)。

LOCALE_SYSTEM_DEFAULT -> Fixnum

システム既定のロケールを示すLCID(0x0800)です。WIN32OLEがオートメーショ ンを利用する場合の既定値です。

LOCALE_USER_DEFAULT -> Fixnum

ユーザ既定のロケールを示すLCID(0x0400)です。

VERSION -> String

Major.Minor.Patch形式のWIN32OLEのバージョン番号を示す文字列です。

class WIN32OLE