Ruby 1.9.3 リファレンスマニュアル > ライブラリ一覧 > 組み込みライブラリ > Fixnumクラス

class Fixnum + Integer

クラスの継承リスト: Fixnum < Integer < Numeric < Comparable < Object < Kernel < BasicObject

要約

Bignum 同様、整数のクラスです。 演算の結果が Fixnum の範囲を越えた時には 自動的に Bignum に拡張されます。

マシンのポインタのサイズに収まる長さの固定長整数で、 ほとんどのマシンでは 31 ビット幅です。

破壊的な変更

Ruby の Fixnum クラスは immutable です。 つまり、オブジェクト自体を破壊的に変更することはできません。 Bignum も同様です。

例:

p 100000.class             # => Fixnum
p 100000 * 100000          # => 100000000
p (100000 * 100000).class  # => Bignum

インスタンスメソッド

self % other -> Fixnum | Bignum | Float

算術演算子。剰余を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
self & other -> Fixnum | Bignum

ビット二項演算子。論理積を計算します。

[PARAM] other:
数値
1 & 1 #=> 1
2 & 3 #=> 2
self * other -> Fixnum | Bignum | Float

算術演算子。積を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
self ** other -> Fixnum | Bignum | Float

算術演算子。冪(べき乗)を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
p 2 ** 3 # => 8
p 2 ** 0 # => 1
p 0 ** 0 # => 1
self ** other -> Integer | Float | Rational [redefined by rational]
rpower(other) -> Integer | Float | Rational [redefined by rational]

冪(べき)乗を計算します。other が 0 以下の場合、計算結果を Rational オブジェクトで返します。

[PARAM] other:
自身を other 乗する数
2.rpower(3)           # => 8
2.rpower(-3)          # => Rational(1, 8)
self + other -> Fixnum | Bignum | Float

算術演算子。和を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
self - other -> Fixnum | Bignum | Float

算術演算子。差を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
self / other -> Fixnum | Bignum | Float

算術演算子。商を計算します。

[PARAM] other:
二項演算の右側の引数(対象)
[RETURN]
計算結果
self / other [redefined by mathn]

[TODO]

Fixnum#quo と同じ働きをします(有理数または整数を返します)。

self < other -> bool

比較演算子。数値として小さいか判定します。

[PARAM] other:
比較対象の数値
[RETURN]
self よりも other が大きい場合 true を返します。 そうでなければ false を返します。
self << bits -> Fixnum | Bignum

シフト演算子。bits だけビットを左にシフトします。

[PARAM] bits:
シフトさせるビット数
printf("%#b\n", 0b0101 << 1) #=> 0b1010
p -1 << 1 #=> -2
self <= other -> bool

比較演算子。数値として等しいまたは小さいか判定します。

[PARAM] other:
比較対象の数値
[RETURN]
self よりも other の方が大きい場合か、 両者が等しい場合 true を返します。 そうでなければ false を返します。
self <=> other -> Fixnum

self と other を比較して、self が大きい時に正、 等しい時に 0、小さい時に負の整数を返します。

[PARAM] other:
比較対象の数値
[RETURN]
-1 か 0 か 1 のいずれか
1 <=> 2 #=> -1
1 <=> 1 #=> 0
2 <=> 1 #=> 1
self == other -> bool

比較演算子。数値として等しいか判定します。

[PARAM] other:
比較対象の数値
[RETURN]
self と other が等しい場合 true を返します。 そうでなければ false を返します。
self > other -> bool

比較演算子。数値として大きいか判定します。

[PARAM] other:
比較対象の数値
[RETURN]
self よりも other の方が小さい場合 true を返します。 そうでなければ false を返します。
self >= other -> bool

比較演算子。数値として等しいまたは大きいか判定します。

[PARAM] other:
比較対象の数値
[RETURN]
self よりも other の方が小さい場合か、 両者が等しい場合 true を返します。 そうでなければ false を返します。
self >> bits -> Fixnum | Bignum

シフト演算子。bits だけビットを右にシフトします。

右シフトは、符号ビット(最上位ビット(MSB))が保持されます。 bitsが実数の場合、小数点以下を切り捨てた値でシフトします。

[PARAM] bits:
シフトさせるビット数
printf("%#b\n", 0b0101 >> 1) #=> 0b10
p -1 >> 1 #=> -1
self[nth] -> Fixnum

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

[PARAM] nth:
何ビット目を指すかの数値
[RETURN]
1 か 0

self[nth]=bit (つまりビットの修正) がないのは、Numeric 関連クラスが immutable であるためです。

self ^ other -> Fixnum | Bignum

ビット二項演算子。排他的論理和を計算します。

[PARAM] other:
数値
1 ^ 1 #=> 0
2 ^ 3 #=> 1
chr -> String
chr(encoding) -> String

与えられたエンコーディング encoding において self を文字コードと見た時、それに対応する一文字からなる文字列を返します。 引数無しで呼ばれた場合は self を US-ASCII、ASCII-8BIT、デフォルト内部エンコーディングの順で優先的に解釈します。

p 65.chr # => "A"
p 0x79.chr.encoding # => #<Encoding:US_ASCII>
p 0x80.chr.encoding # => #<Encoding:ASCII_8BIT>
p 12354.chr Encoding::UTF_8 # => "あ"
p 12354.chr Encoding::EUC_JP
# => RangeError: invalid codepoint 0x3042 in EUC-JP
p 12354.chr Encoding::ASCII_8BIT
# => RangeError: 12354 out of char range
p (2**32).chr
# => RangeError: bignum out of char range
[PARAM] encoding:
エンコーディングを表すオブジェクト。Encoding::UTF_8、'shift_jis' など。
[RETURN]
一文字からなる文字列
[EXCEPTION] RangeError:
self を与えられたエンコーディングで正しく解釈できない場合に発生します。

[SEE_ALSO] String#ord

denominator -> Integer

分母(常に1)を返します。

[RETURN]
分母を返します。

[SEE_ALSO] Integer#numerator

downto(min) {|n| ... } -> self
downto(min) -> Enumerator

self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。

[PARAM] min:
数値
[RETURN]
self を返します。

[SEE_ALSO] Integer#upto, Numeric#step, Integer#times

even? -> bool

自身が偶数であれば真を返します。 そうでない場合は偽を返します。

gcd(n) -> Integer

自身と整数 n の最大公約数を返します。

[EXCEPTION] ArgumentError:
n に整数以外のものを指定すると発生します。

例:

2.gcd(2)                    # => 2
3.gcd(7)                    # => 1
3.gcd(-7)                   # => 1
((1<<31)-1).gcd((1<<61)-1)  # => 1

また、self や n が 0 だった場合は、0 ではない方の整数の絶対値を返します。

3.gcd(0)                    # => 3
0.gcd(-7)                   # => 7

[SEE_ALSO] Integer#lcm, Integer#gcdlcm

gcdlcm(n) -> [Integer]

自身と整数 n の最大公約数と最小公倍数の配列 [self.gcd(n), self.lcm(n)] を返します。

[EXCEPTION] ArgumentError:
n に整数以外のものを指定すると発生します。

例:

2.gcdlcm(2)                    # => [2, 2]
3.gcdlcm(-7)                   # => [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1)  # => [1, 4951760154835678088235319297]

[SEE_ALSO] Integer#gcd, Integer#lcm

id2name -> String | nil

オブジェクトの整数値 self を、ある Symbol オブジェクトに対応する整数値とみなした上で、 そのシンボルを示す文字列を返します。 整数に対応するシンボルは必ずしも存在せず、その場合は nil を返します。

[RETURN]
オブジェクト名を示す文字列か nil

例:

:foo.to_i      #=> 14585
14585.id2name  #=> "foo"
1.id2name      #=> nil

Fixnum#to_sym で得たシンボルに対して Symbol#to_s で文字列にしたものとおおかた一致しますが、 nil のときの挙動が異なります。

例:

1.id2name     #=> nil
1.to_sym.to_s #=> ""
integer? -> true

常に真を返します。

lcm(n) -> Integer

自身と整数 n の最小公倍数を返します。

[EXCEPTION] ArgumentError:
n に整数以外のものを指定すると発生します。

例:

2.lcm(2)                    # => 2
3.lcm(-7)                   # => 21
((1<<31)-1).lcm((1<<61)-1)  # => 4951760154835678088235319297

また、self や n が 0 だった場合は、0 を返します。

3.lcm(0)                    # => 0
0.lcm(-7)                   # => 0

[SEE_ALSO] Integer#gcd, Integer#gcdlcm

next -> Fixnum | Bignum
succ -> Fixnum | Bignum

self の次の整数を返します。

numerator -> Integer

分子(常に自身)を返します。

[RETURN]
分子を返します。

[SEE_ALSO] Integer#denominator

odd? -> bool

自身が奇数であれば真を返します。 そうでない場合は偽を返します。

ord -> Integer

自身を返します。

10.ord    #=> 10
# String#ord
?a.ord    #=> 97

[SEE_ALSO] String#ord

pred -> Integer

self から -1 した値を返します。

1.pred      #=> 0
(-1).pred   #=> -2
quo(other) -> Rational [redefined by rational]

商を計算して計算結果を Rational オブジェクトで返します。

[PARAM] other:
自身を割る数

例:

1.quo(2)              # => Rational(1,2)
rationalize -> Rational
rationalize(eps) -> Rational

自身を Rational に変換します。

[PARAM] eps:
許容する誤差

引数 eps は常に無視されます。

例:

2.rationalize      # => (2/1)
2.rationalize(100) # => (2/1)
2.rationalize(0.1) # => (2/1)
size -> Fixnum

整数の実装上のサイズをバイト数で返します。

現在の実装では Fixnum は、sizeof(long) 固定(多くの 32 bit マシンで 4 バイト)、Bignumは、システム依存です。

p 1.size
p 0x1_0000_0000.size
# => 4
     8
times {|n| ... } -> self
times -> Enumerator

self 回だけ繰り返します。 self が正の整数でない場合は何もしません。

またブロックパラメータには 0 から self - 1 までの数値が渡されます。

3.times { puts "Hello, World!" }  # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" }  # 何も表示されない。
5.times {|n| print n }            # 01234 と表示される。

[SEE_ALSO] Integer#upto, Integer#downto, Numeric#step

to_f -> Float

値を浮動小数点数(Float)に変換します。

to_i -> self
to_int -> self

self を返します。

to_r -> Rational

自身を Rational に変換します。

例:

1.to_r        # => (1/1)
(1<<64).to_r  # => (18446744073709551616/1)
to_s -> String
to_s(base) -> String

整数を 10 進文字列表現に変換します。

引数を指定すれば、それを基数とした文字列表 現に変換します。

p 10.to_s(2)    # => "1010"
p 10.to_s(8)    # => "12"
p 10.to_s(16)   # => "a"
p 35.to_s(36)   # => "z"
[RETURN]
数値の文字列表現
[PARAM] base:
基数となる 2 - 36 の数値。
[EXCEPTION] ArgumentError:
base に 2 - 36 以外の数値を指定した場合に発生します。
to_sym -> Symbol | nil

オブジェクトの整数値 self に対応する Symbol オブジェク トを返します。整数に対応するシンボルが存在しない時には nil を返します。

[RETURN]
シンボルか nil

例:

:foo.to_i     #=> 14585
14585.to_sym  #=> :foo
1.to_sym      #=> nil
upto(max) {|n| ... } -> Fixnum | Bignum
upto(max) -> Enumerator

self から max まで 1 ずつ増やしながら繰り返します。 self > max であれば何もしません。

[PARAM] max:
数値
[RETURN]
self を返します。

[SEE_ALSO] Integer#downto, Numeric#step, Integer#times

self | other -> Fixnum | Bignum

ビット二項演算子。論理和を計算します。

[PARAM] other:
数値
1 | 1 #=> 1
2 | 3 #=> 3
~ -> Fixnum | Bignum

ビット演算子。否定を計算します。

~1  #=> -2
~3  #=> -4
~-4 #=> 3
class Fixnum